Modeling and Optimization of a Fuel Cell Hybrid System

نویسندگان

  • Lorenzo Bertini
  • Göran Lindbergh
چکیده

The purpose of this project was the modeling, optimization and prediction of a hybrid system composed of a fuel cell, a dc-dc converter and a supercapacitor in series. Lab tests were performed for each device to understand their behavior, and then each one was modeled using software (Simulink). The validation of the model was done by comparing its results with measured data; finally the model was used for the optimization and the prediction of the hybrid system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal power management of fuel cell hybrid vehicles

This paper presents a control strategy developed for optimizing the power flow in a Fuel Cell Hybrid Vehicle structure. This method implements an on-line power management based on the optimal fuzzy controller between dual power sources that consist of a battery bank and a Fuel Cell (FC). The power management strategy in the hybrid control structure is crucial for balancing between efficiency an...

متن کامل

Multi-objective Optimization of PV-SOFC-GT-Electrolyser Hybrid System

This study shows the design of a new hybrid power generation system, photovoltaic panel (PV)–coupled solid oxide fuel cell (SOFC) and gas turbine (GT)–electrolyser. Three objectives (cost, pollutant emissions, and reliability), which are usually in conflict, are considered simultaneously. The design of a hybrid system, considering the three mentioned objectives, poses a very complex problem of o...

متن کامل

Modeling and Process Analysis of a Biomass Gasifier-Molten Carbonate Fuel Cell-Gas Turbine-Steam Turbine Cycle as a Green Hybrid Power Generator

Fuel cell-based hybrid cycles that include conventional power generators have been created to modify energy performance and output power. In the present paper, integrated biomass gasification (IBG)-molten carbonate fuel cell (MCFC)-gas turbine (GT) and steam turbine (ST) combined power cycle is introduced as an innovative technique in terms of sustainable energy. In addition, biomass gasificati...

متن کامل

Optimal Sizing of a Reliable Hydrogen-based Stand-alone Wind-Fuel Cell System

A hybrid wind/ fuel cell generation system is designed to supply power demand. The aim of this design is to minimize the total cost of the hybrid system over an expected 20 years of operation. The optimization problem is solved aimed at providing a reliable supply for the consumer’s demand. The system consists of fuel cells, some wind units, some electrolyzers, a reformer, an anaerobic reactor ...

متن کامل

A Study on Performance of Solid Oxide Fuel Cell-Stirling Engine Cycle Combined System- Part I: SOFC Simulation by Programming in Matlab and Modeling in Hysys

In recent years, using new methods in utilization of energy resources has become necessary due to environmental pollution and restriction of energy resources. The hybrid system presented in this article produced power with SOFC and Stirling engine. The purpose is to analyze a 50 kW Solid Oxide Fuel Cell that could produce enough thermal energy for a 10 kW Stirling engine working in the hybrid s...

متن کامل

Frequency Control of Isolated Hybrid Power Network Using Genetic Algorithm and Particle Swarm Optimization

This paper, presents a suitable control system to manage energy in distributed power generation system with a Battery Energy Storage Station and fuel cell. First, proper Dynamic Shape Modeling is prepared. Second, control system is proposed which is based on Classic Controller. This model is educated with Genetic Algorithm and particle swarm optimization. The proposed strategy is compared with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011